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Abstract: We study spiky strings in the context of the SL(2) Bethe ansatz equations. We

find an asymmetric distribution of Bethe roots along one cut that determines the all loop

anomalous dimension at leading and subleading orders in a large S expansion. At leading

order in strong coupling (large λ) we obtain that the energy of such states is given, in terms

of the spin S and the number of spikes n by E−S = n
√

λ
2π

(

ln 4πS√
λ

+ ln 4
n sin π

n − 1
)

+O
(

lnS
S

)

.

This result matches perfectly the same expansion obtained from the known spiky string

classical solution.

We then discuss a two cut spiky string Bethe root distribution at one-loop in the SL(2)

Bethe ansatz. In this case we find a limit where n → ∞, keeping E+S
n2 , E−S

n , J
n fixed. This

is the one loop version of a limit previously considered in the context of the string classical

solutions in AdS5 ×S5. In that case it was related to a string solution in the AdS pp-wave

background.
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1 Introduction

Remarkable progress was achieved in the understanding of the AdS/CFT correspondence

by studying the SL(2) sector of the theory. Much of this progress relates to twist two

gauge theory operators of the type tr(ΦDS
+Φ). On the string side they are described by

the folded string solution [1] as can also be verified by an alternative computation in terms

of the cusp anomaly [2]. In the field theory a proposed all loop Bethe ansatz [3] can

be used to compute their anomalous dimension at all loops in the planar approximation.

Computations of quantum corrections to the folded string solution [4] at leading order in

large S as well as its generalization to AdS3 × S1 [5–7] were recently used to successfully

check such all loop asymptotic Bethe ansatz [8–11]. The all loop asymptotic Bethe ansatz

computation was then extended to the subleading orders in large S expansion [11–13] and

precise matching with the corresponding string theory computations [14] was found.

Beyond twist two, the SL(2) sector contains operators of higher twist which have also

been investigated. For example operators of the type

O = tr

(

D
S
n
+Φ D

S
n
+Φ . . . D

S
n
+Φ

)

(1.1)
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are described, on the string side, by the spiky string solutions [15]. There has been some

recent progress in this area. In [16] the solutions were shown to correspond to multi-

soliton solutions of a generalized sinh-Gordon model. This allowed the construction of

new, more general, solutions where the spikes move with respect to each other opening up

the possibility to study a whole new class of operators. The relation with field theory was

examined in detail in [17] where the elliptic curves associated with the classical solution

where analyzed and a map was proposed to a similar structure emerging from the study of

the field theory operators.

However, with the current methods, full understanding of these operators from the field

theory point of view requires the construction of the Bethe ansatz solution that describes

them. It is the goal of this paper to fill this gap by providing a proposal to describe the

spiky string solution in the all loop Bethe ansatz.

It was shown in [18, 19] and extended in [17] that such operators can be described by

a spin chain with a number of sites n being the same as the number of spikes. At leading

order in large S the spiky string solution touches the boundary of AdS3. It was shown [20]

that at this order the spiky string solution can be mapped to the folded string solution

by a conformal transformation, and thus the all loop energy at leading order in large S is

given by

E − S =
n

2
f(λ) ln S + O(S0, n) (1.2)

where f(λ) is a universal scaling function known as the cusp anomaly. In this paper we

obtain this result from the field theory side by an all loop Bethe ansatz computation.

In a semiclassical analysis in string theory the spiky string solution was extended to

AdS3 × S1 in [21]. It turns out that, in the limit of large number of spikes n → ∞, there

is an interesting scaling limit in which E+S
n2 , E−S

n and J
n remain fixed. It was shown in [21]

that the solution in this limit is related to a solution in the AdS pp-wave background

introduced in [20]. In this paper, by using the found Bethe ansatz solution, it is shown

that the same pp-wave like limit can be taken at weak coupling.

To construct the Bethe ansatz solution, an important input is a set of integers nk

which may be interpreted as the bosonic mode numbers of the waves propagating in the

spin chain. Different such sets of numbers give rise to different solutions of the Bethe ansatz

equations. The folded string solution in AdS3 reduces [22] to the folded string solution in

flat space in the limit S√
λ
≪ 1. In flat space we can quantize the string exactly in terms

of right and left moving waves propagating on the string. It is easily seen that the folded

string has the same number of right and left moving excitations, i.e. nL = nR, with the

same wave numbers kL = kR = 1. Extending this idea to AdS3 for all values of spin S

and coupling λ, suggests that in a Bethe ansatz computation the folded string solution is

described by two sets of modes, one with nk = −1 and the other with nk = 1. These

numbers were used then as the input in the one loop SL(2) Bethe ansatz equations for two

cuts (corresponding to nk = ±1), and a symmetric Bethe root distribution was found to

describe the folded string solution [23]. The same bosonic quantum numbers were used

later [3, 24] to find the corresponding solution to the all loop Bethe ansatz. In the large S
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limit and finite J the two cuts in fact merge into one cut with a discontinuous wave-number

distribution since we still have nk = ±1.

Following the same procedure, we look at the spiky string solution in flat space, find the

left and right wave numbers and use them as an input to find the corresponding Bethe root

equation that we then proceed to solve. The spiky string solution was already discussed

in [15]. It turns out that the bosonic quantum numbers that should be used in the Bethe

ansatz equations are nL = −1 and nR = n − 1. Using this input we find an asymmetric

distribution of Bethe roots spread over one cut along the real axis at one loop in weak

coupling and leading order in the large S expansion. We then extend the computation to

all loops and further obtain the all loop result also for the subleading order in large S.

More precisely, we obtain that the energy of the spiky string at all loops can be written as

E − S = n + f(g)
n

2

(

ln S + γE + ln

(

2

n
sin

π

n

))

+
n

2
B2(g) + O

(

ln S

S
, n

)

,

g2 =
λ

16π2
(1.3)

where B2(g) denotes the virtual scaling function of twist 2 operators obtained in [12]. The

leading large S term, i.e. E − S ≃ f(g)n
2 ln S, matches the string theory result (1.2) at the

same order.

If we further expand the all loop result (1.3) for large coupling we obtain

E − S =
n
√

λ

2π

(

ln
4πS√

λ
+ ln

(

4

n
sin

π

n

)

− 1

)

(1.4)

+
n

2

(

1 +
6 ln 2

π
− 3 ln 2

π
ln

(

4

n
sin

π

n

)

− 3 ln 2

π
ln

4πS√
λ

)

+ O
(

1√
λ

,
lnS

S

)

Remarkably, the first line precisely matches the result known from expanding the classical

string solution [14], that is, not only at order lnS but also S0. The second line is a

prediction for the quantum corrections to the classical solution which will be interesting

to check explicitly. Let us observe that, since the asymptotic Bethe ansatz reproduces the

correct strong coupling result to order S0, wrapping effects play no role to this order in S.

Having understood the solution with one cut we proceed to consider a two cut solution

to the one-loop Bethe ansatz equations. Again we use the “spiky string” bosonic quantum

numbers for the integers nk, i.e. one cut has nk = −1 and the other nk = n − 1 where

n is the number of spikes. The solution has four real parameters d < c < a < b which

represent the position of the two cuts given by the segments [d, c] and [b, a]. The solution

obtained allows us to compute the energy E, spin S, R-charge J and number of spikes n in

terms of these parameters. Although there are four parameters it turns out that, for the

solution to exist, a consistency condition has to be satisfied which implies that only three

are independent. Equivalently this means that we can, implicitly, express the energy as a

function of the other physical quantities E = E(S, J, n). As a check, in the limit c, b → 0,

namely when the cuts merge, we recover the results of the previous one cut solution.

More interestingly, in the limit d → −∞ a pp-wave type scaling is obtained, i.e.

n → ∞, with E+S
n2 , E−S

n and J
n remaining fixed. In this limit the equations simplify since

– 3 –
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one parameter is removed. To be able to compare with the string calculation of [21] it

would be necessary to extend this results to all loops and then consider the strong coupling

limit. This should be an important test of the all-loop Bethe ansatz since these solutions

contain a lot of structure and a highly non-trivial dependence of the energy with the

other parameters.

Another direction one can pursue is to consider the Bethe ansatz description of the

more general solutions described in [16]. In fact at this point it might be more interesting

to find a direct mapping between the classical action of the string and the classical action

of the spin chain (at strong coupling) in a similar way as in [25]. Mapping the actions

would determine a mapping between the configurations of the string and those of the spin

chain. In particular this would allow to understand how to see the spikes and their motion

from the spin chain/field theory point of view. In the approach we follow here this cannot

be seen since we map a semiclassical or coherent state on the string side to an eigenstate

of the Hamiltonian (Bethe ansatz). A more detailed map would have to be constructed

between coherent states on both sides.

The paper is organized as follows. In section 2 we review the spiky string solution in

flat space which leads us to the correct mode numbers to be used in the Bethe ansatz. In

section 3 we present in detail the construction of the one-loop Bethe root distribution for a

one cut solution at leading order in large S. In section 4 we extend the computation to all

loops using the all loop asymptotic Bethe ansatz. Section 5 deals with the extension of the

all loop solution at leading order in large S to the subleading order O(S0). In section 6 we

analyze the spiky string solution with two cuts using the one loop Bethe ansatz equations.

We then take two limits: first a limit when the two cuts collide recovering the one cut

solution, and second, we consider the pp-wave type limit. In appendix A we present some

details about the solution of the Bethe ansatz equations which we used throughout the

paper. In appendix B we present a review of the O(S0) corrections to the ground state,

which corresponds to the folded spinning string solution.

2 Spiky strings in flat space

As with the folded string, it is convenient to start by studying solutions in flat space. In

that case we can quantize the theory exactly and it turns out that the solutions are just a

superpositions of a left and a right moving waves:

x = A cos ((n − 1) σ+) + A (n − 1) cos (σ−) (2.1)

y = A sin ((n − 1) σ+) + A (n − 1) sin (σ−) (2.2)

t = 2A (n − 1) τ = A (n − 1) (σ+ + σ−) (2.3)

where σ+ = τ +σ, σ− = τ −σ, n is the number of spikes and A is constant that determines

the size of the string. Here, (τ, σ) parameterize the world-sheet of a string which is moving

in a Minkowski space with metric:

ds2 = −dt2 + dx2 + dy2 (2.4)
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The solutions are periodic in σ with period 2π and satisfy the equations of motion in

conformal gauge, (∂2
τ − ∂2

σ)Xµ = 0, as well as the constraints (∂+X)2 = (∂−X)2 = 0.

Quantum mechanically the state has nR = A2(n − 1)2 right moving excitations of wave

number kR = 1 and nL = A2(n− 1) left moving excitations with wave number kL = n− 1

(satisfying the level matching condition nRkR = nLkL).

All excitations carry one unit of angular momentum and therefore the total angular

momentum and energy are given by

S = nL +nR = A2n(n−1), E =
√

2(nLkL + nRkR) = 2A(n−1), E = 2

√

n − 1

n
S (2.5)

which agrees with a classical computation. For n = 2 we recover the standard Regge

trajectory E =
√

2S and for n > 2 we get a Regge trajectory of modified slope.

At fixed time, the shape of the string for different values of n takes the form depicted

in figures 1 and 2. It can be seen that the string has n spikes or cusps and, analyzing the

time dependence, that it rotates rigidly in such a way that the end points of the spikes

move at the speed of light. More details on these solutions can be found in [15]. Here,

we will just need the fact that the spiky string is obtained by superposing left and right

moving waves of different momentum. This suggests that when extending to all loops we

should take a distributions of Bethe roots such that the wave number can take the values

nw = −1 or nw = n − 1 where n is the number of spikes.

3 Spiky strings in the Bethe Ansatz: 1-cut solution

We follow the same prescription used in [24] to obtain the ln S dependence from the Bethe

ansatz at large S. In the SL(2) sector the Bethe roots are on the real axis and, for large S,

they accumulate on various segments or cuts. In the case of the folded string with J = 2

and S ≫ 1, there is only one cut and the root distribution is symmetric.1 In this case,

namely for the lowest twist, there is only one state whereas for J > 2 there is more then

one state. Nevertheless, for the lowest energy state at higher twist, the root distribution

is again symmetric as discussed in [24]. In this section we consider excited energy states

which describe the n-spike solution in the large S limit for a fixed finite J .

Following the discussion of the previous section, in the case of the spiky strings at lead-

ing order in large S, we assume to have one cut but with an asymmetric root distribution.

The mode numbers of each excitation will be taken to be nw = −1 or nw = n− 1 where n

is the number of spikes.

Let us start with the one loop SL(2) spin chain. The one loop Bethe ansatz equations

corresponding to a XXX− 1

2

nearest neighbor spin chain can be written as

(

uk + i
2

uk − i
2

)J

=

S
∏

j 6=k

uk − uj − i

uk − uj + i
, k = 1, 2, . . . , S (3.1)

1In the case when S ∼ J ≫ 1 there are two cuts. This situation was analyzed in [23] and will be studied

later in this paper.
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Figure 1. Rotating string with 3 spikes in flat space. We plot (x, y) in eq. (2.3) parametrically as

a function of σ = 0 → 2π for n = 3, A = 1 and τ = 0.

Taking the logarithm of (3.1), and further expanding in 1
u as appropriate for large S

gives [24]

J

uk
= 2πnk − 2

S
∑

j=1,j 6=k

1

uk − uj
(3.2)

where uk are the Bethe roots and J is the length of the corresponding spin chain. The

total momentum should vanish due to the cyclicity of the trace. This condition reads

S
∏

j=1

uj + i
2

uj − i
2

= 1 (3.3)

The one loop energy is given by

E − S =
S
∑

k=1

1

u2
k + 1

4

(3.4)

At this point one should solve eq. (3.2) for the real numbers uk subject to the condi-

tion (3.3). However, when the number of roots S is very large, the roots accumulate in

cuts on the real axis and one can conveniently approximate the problem by defining a

density of roots. Thus we introduce the root distribution function ρ0(u) =
∑

k δ(u − uk).

Furthermore, for large S, the cut grows as S and we can make the approximation that

– 6 –
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Figure 2. Rotating string with 10 spikes in flat space. We plot (x, y) in eq. (2.3) parametrically

as a function of σ = 0 → 2π for n = 10, A = 1 and τ = 0.

u ≫ 1. Therefore, at leading order in the large S expansion (3.2), we need to solve

the equations

−
∫

du
ρ0(u)

u′ − u
= πnw(u′) (3.5)

∫

duρ0(u) = S (3.6)

−
∫

du
ρ0(u)

u
= 0, (3.7)

which are, the Bethe equation, the normalization of the density, and the zero momentum

condition. The function ρ0(u) has support on a finite interval that needs to be determined

as part of the solution.

To solve these equations we use the method described in the appendix. We first define

the cut, namely the interval where ρ0 is non-vanishing, to extend from d < x < a with

d < 0 and a > 0. The function nw(u) is defined as

nw(u) =

{

−1, d < u < 0

n − 1, 0 < u < a
(3.8)

In figure 3 we plot such functions in terms of a rescaled ū = u
S . We then introduce a

function F (w) =
√

w − a
√

w − d which has a cut on the real axis extending precisely from

– 7 –
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Figure 3. Wave numbers nw(ū) = nw(u

S
) for n=2,3,6. By analogy with flat space, we take the

modes with ū < 0 to have nw = −1 and those with ū > 0 to have nw = n − 1.

d to a. Furthermore, right above (below) the cut it is purely imaginary with positive

(negative) imaginary part. Using this function we define the resolvent as

G(w) =
1

π

∫ a

d

F (w)

F (u + i0+)

nw(u)

u − w
du (3.9)

which, following the appendix A, determines ρ0(u) to be

ρ0(u) =
1

π
−
∫ a

d

∣

∣

∣

∣

F (u)

F (u′)

∣

∣

∣

∣

nw(u′)
u′ − u

du′ (3.10)

Besides, we need the behavior of G(w) at infinity which is readily seen to be

G(w) ≃ G0 + G1
1

w
+ . . . , w → ∞ (3.11)

with

G0 = − 1

π

∫ a

d

nw(u)

F (u + i0+)
du = i

n − 2

2
+

in

π
arcsin

(

a + d

a − d

)

(3.12)

G1 = −a + d

2
G0 −

1

π

∫ a

d

nw(u)

F (u + i0+)
du (3.13)

As explained in the appendix we need to satisfy the consistency condition

Res

[

G(w)

w − u
,∞
]

= −G0 = 0 (3.14)

– 8 –
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for ρ0(u) to solve eq. (3.5). On the other hand, equation (3.6) gives

S =

∫ a

d
ρ0(u)du =

1

2

∮

C
G(w)dw = iπRes [G(w),∞] = −iπG1 (3.15)

and eq. (3.7) is

0 = −
∫ a

d

ρ0(u)

u
du =

1

2

∮

C

G(w)

w
dw = iπRes

[

G(w)

w
,∞
]

= iπG0 (3.16)

which is satisfied if (3.14) is. In the previous equations we used a contour C that encircles

the cut in a clockwise direction. Using (3.12) we then find

− a

d
= tan2

( π

2n

)

(3.17)

Using (3.13) and (3.15) gives

S = n
√
−ad (3.18)

Before computing the energy let us compute the generating function G

G(w) =
F (w)

iπ

∫ a

d
du

nw(u)

(u − w)
√

(a − u)(u − d)
= −i ± n

π
ln

√

a(w − d) +
√

−d(a − w)
√

−d(a − w) −
√

a(w − d)

(3.19)

where ± refer to w having positive or negative imaginary part. w takes values in the

complex plane with a cut along the real axis from d to a.

We now need to compute the energy which, within the Bethe ansatz is given by

E − S =

∫ a

d

ρ0(u)

u2 + 1
4

du =
1

2

∮

C

G(w)

w2 + 1
4

dw (3.20)

= iπ

{

Res

[

G(w)

w2 + 1
4

,
i

2

]

+ Res

[

G(w)

w2 + 1
4

,− i

2

]}

= π

(

G

(

i

2

)

− G

(

− i

2

))

(3.21)

Using the definition of G(w) and through an explicit computation we find

E − S = 2πReG

(

i

2

)

= 2Im

∫

F ( i
2 )

|F (u)|
nw(u)

u − i
2

du (3.22)

= n ln

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

√

a( i
2 − d) +

√

(a − i
2)(−d)

)2

− i
2(a − d)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.23)

For fixed n and large S we see from eqs. (3.17) and (3.18) that a ∼ d ∼ S ≫ 1 so we can

approximate the last equation as

E − S ∼= n ln

(

− 8ad

a − d

)

, S ≫ 1 (3.24)
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Figure 4. Root density ρ0(ū) = ρ0(
u

S
) for n = 2, n = 3 and n = 6. The larger the n the more

skewed the distribution becomes.

Therefore, through eqs. (3.18), (3.24), we have solved the problem by writing E and S in

terms of two parameters a and d related by the condition (3.17). Explicitly we can write

a =
S

n
tan

π

2n
(3.25)

d = −S

n
cot

π

2n
(3.26)

E = S + 2n ln

(

4S

n
sin

π

n

)

(3.27)

Notice that up to now we have not needed the actual density ρ0(u). However, in the

following section it will be needed for extending the result to all loops and subleading

terms in the large S expansion. Using eq. (3.10) it can be written as

ρ0(u) =
n

π
ln

∣

∣

∣

∣

∣

√

a(u − d) +
√

−d(a − u)
√

a(u − d) −
√

−d(a − u)

∣

∣

∣

∣

∣

(3.28)

=







2n
π arctanh

√
−d

√
a−u√

a
√

u−d
, a ≥ u > 0

2n
π arctanh

√
a
√

u−d√
−d

√
a−u

, d ≤ u < 0
(3.29)

Plots of the root distribution are shown in figure 4. It is clear that S can be thought as

determining the scale of the variable u. For that reason it is convenient to define a rescaled
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variable ū = u
S . Defining new parameters

ã =
1

n
cot

π

n
, b̃ =

1

n sin π
n

(3.30)

such that d
S = −(ã + b̃), a

S = b̃ − ã we find another convenient way to write the density:

ρ̄0(ū) =
n

2π
ln

b̃2 − (ū + ã)ã +
√

b̃2 − (ū + ã)2
√

b̃2 − ã2

b̃2 − (ū + ã)ã −
√

b̃2 − (ū + ã)2
√

b̃2 − ã2

(3.31)

Summarizing, the result from this section is that the energy of the spiky string at one-loop

is given by

E − S = 2n ln S + O(S0) (3.32)

When n = 2 this indeed recovers the twist two result in [24]. The leading order expression

is proportional to n similarly as at strong coupling.

4 Spiky strings in the all loop Bethe ansatz

After understanding the root distribution at one-loop we now proceed to find a solution to

the all-loop Bethe equations. We will follow the procedure used in [24]. The asymptotic

all loop Bethe equations in the SL(2) sector read

2J arctan(2uk) + iJ ln
1 + g2/(x−

k )2

1 + g2/(x+
k )2

= 2πñk − 2

S/2
∑

j=−S/2

j 6=0

arctan(uk − uj) (4.1)

+2i

S/2
∑

j=−S/2

j 6=0

ln
1 − g2/x+

k x−
j

1 − g2/x−
k x+

j

− 2

S/2
∑

j=−S/2

j 6=0

θ(uk, uj),

where θ(u, v) denotes the dressing phase and x±(u) are defined through u ± i
2 = x±(u) +

g2

x±(u) . For the ground state the ”fermionic” mode numbers are given by [24]

ñk = k′ +
J − 2

2
ǫ(k), k′ = ±1

2
, ±3

2
, . . . ,±S − 1

2
, (4.2)

where k′ = k − ǫ(k)/2.

For the highest excited state there is no gap in the mode numbers [18]

ñk = k′, k′ = ±1

2
, ±3

2
, . . . ,±S − 1

2
. (4.3)

In the limit of large S we define the density of roots as

ρ(u) = S
d(k′/S)

du
(4.4)
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and the all loop equations can then be written as

J

u2 + 1/4
+ iJ

d

du
ln

1 + g2/(x−(u))2

1 + g2/(x+(u))2
= 2πρ(u) − 2

∫ d

a

ρ(u′)
(u − u′)2 + 1

(4.5)

+

∫ d

a
du′ρ(u′)

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

− 2θ(u, u′)

)

.

At one-loop this reduces to

J

u2 + 1/4
= 2πρ0(u) − 2

∫ a

d
du′ ρ0(u

′)
(u − u′)2 + 1

. (4.6)

Rescaling the roots, u = Sū, we find in the large S limit

2J

S
πδ(u) = 2πρ̄0(ū) − 2

∫ b̃−ã

−b̃−ã
dū′ρ̄0(ū)

(

πδ(ū − ū′) +
1

S
P 1

(ū − ū′)2

)

(4.7)

and the one-loop equation reduces to

0 = πJδ(ū) + −
∫ b̃−ã

−b̃−ã
dū′ ρ̄0(ū

′)
(ū − ū′)2

. (4.8)

For the highest excited state J is equal to the number of cusps, n, and we recognize the

above equation as the derivative of the one-loop equation.

To simplify the presentation of the all-loop computation we will omit the dressing

phase and only restore its contribution in the end. We can now proceed with the all loop

equation by splitting off the one-loop piece of the density, ρ(u) = ρ0(u) + 2g2σ̃(u),

0 = 2πσ̃(u) − 2

∫ ∞

−∞

σ̃(u′)
(u − u′)2 + 1

+
1

2g2

∫ a

d
du′ρ0(u

′)
d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

+

∫ ∞

−∞
du′σ̃(u′)

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

. (4.9)

In the above we have extended the integral boundaries to ±∞ in the terms containing the

higher loop density, σ̃(u). For the term containing the one-loop density we find, in the

large S limit,

1

2g2

∫ a

d
du′ρ0(u

′)
d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

= −i

∫ a

d
du′ρ0(u

′)
d

du

(

1

x+(u)x−(u′)
− 1

x−(u)x+(u′)

)

= π
d

du

(

G
(

i
2

)

x+(u)
− G

(

− i
2

)

x−(u)

)

+ . . . , (4.10)

Using (3.19) we find

G
(

± i
2

)

= ±n

π
ln S + . . . (4.11)
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and

0 = 2πσ̃(u) − 2

∫ ∞

−∞

σ(u′)
(u − u′)2 + 1

+n lnS
d

du

(

1

x+(u)
+

1

x−(u)

)

+

∫ ∞

−∞
du′σ̃(u′)

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

. (4.12)

After Fourier transformation2 and a redefinition of the density,

σ̂(t) = −2net/2 ˆ̃σ(t) ln S, (4.13)

the result is

σ̂(t) =
t

et − 1

(

K(2gt, 0) − 4g2

∫ ∞

0
dt′K(2gt, 2gt′)σ̂(t′)

)

(4.14)

with the kernel defined by

K(t, t′) = K0(t, t
′) + K1(t, t

′) (4.15)

K0(t, t
′) =

2

tt′

∞
∑

n=1

(2n − 1)J2n−1(t)J2n−1(t
′) (4.16)

K1(t, t
′) =

2

tt′

∞
∑

n=1

2nJ2n(t)J2n(t′). (4.17)

Including the dressing phase in the computation replaces the kernel above with

K(t, t′) = K0(t, t
′) + K1(t, t

′) + Kd(t, t
′) (4.18)

where

Kd(t, t
′) = 8g2

∫ ∞

0
dt′′K1(t, 2gt′′)

t′′

et′′ − 1
K0(2gt′′, t′). (4.19)

Further we find that the energy is given by

E − S = 8g2 nσ̂(0) ln S + O(S0). (4.20)

which gives

E − S =
n

2
f(g) ln S + O(S0) (4.21)

which matches the string theory result at leading order in large S [20].

5 Subleading corrections for the highest excited state

The computation of the first subleading corrections for the highest excited state follow the

same logic as the corresponding computation for the ground state but uses an asymmetric

root density. The subleading corrections for the ground state were computed in [11, 12]

using a method different than what will be convenient here. We will here use the same

method as in [3, 24] but also include subleading corrections, for convenience we include the

corresponding computation for the ground state in appendix B.

2We use the convention f̂(t) =
R ∞

−∞
dw e−iwtf(w). Details on the Fourier transforms used here can be

found in [24].
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5.1 One loop

The one-loop equation equation is given in (4.6), where J should be set to n for the highest

excited state. An approximate solution to this equation is given by (3.28) which we expand

for large S

ρ̃0(u) =
n

π
ln S − n

2π
ln(u2) +

n

π
ln

(

2

n
sin

π

n

)

+ O(1/S). (5.1)

The above density captures only the leading order in the large spin expansion correctly. To

get the subleading corrections of order S0 we split off the above solution from the density,

ρ0(u) = ρ̃0(u) + r(u), (5.2)

and solve for r(u). We are now allowed to extend the limits of integration to ±∞.

0 = 2πr(u) + 2n ln S − n ln(u2) + 2n ln

(

2

n
sin

π

n

)

− n

u2 + 1/4

−2

∫ ∞

−∞
dv

(

n

π
ln S − n

2π
ln(u2) +

n

π
ln

(

2

n
sin

π

n

))

1

(u − v)2 + 1

−2

∫ ∞

−∞
dv

r(v)

(u − v)2 + 1
. (5.3)

The equation can be solved by Fourier transformation

r̂(t) = n

(

e−|t|/2

1 − e−|t| −
1

|t|

)

. (5.4)

Computing the energy including the first two orders in the large S expansion we find

E − S =

∫ a

d

ρ̃0(u)

u2 + 1/4
+

∫ ∞

−∞
du

r(u)

u2 + 1/4

= 2n ln S + 2n ln

(

4

n
sin

π

n

)

+ n

∫ ∞

−∞
dt

(

e−|t|

1 − e−|t| −
e−|t|/2

|t|

)

= 2n

(

ln S + γE + ln

(

2

n
sin

π

n

))

. (5.5)

5.2 All loops

The all loop equation can be written as

n
d

du
ln

x(i/2 + u)

x(i/2 − u)
= 2πρ(u) −

∫ a

d

ρ(u′)
(u − u′)2 + 1

+

∫ a

d
du′ρ(u′)

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

− 2θ(u, u′)

)

. (5.6)

Again we will omit the dressing phase, only to restore it in the end. Splitting off the

one-loop density

ρ(u) = ρ0(u) + 2g2σ̃(u), (5.7)
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where ρ0(u) satisfies (4.6), we find

n

2g2

(

d

du
ln

x(i/2 + u)

x(i/2 − u)
− 1

u2 + 1/4

)

= 2πσ̃(u) − 2

∫ ∞

−∞

σ̃(u′)
(u − u′)2 + 1

+ I(u) (5.8)

+

∫ ∞

−∞
du′σ̃(u′)

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

where

I(u) =
1

2g2

∫ a

d
du′ρ0(u

′)
d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

. (5.9)

Note that the limits of integration in the integrals containing the higher loop density can

be extended to ±∞ to this level of approximation. To obtain the all loop energy,

E − S =

∫ a

d
ρ(u)

(

i

x+(u)
− i

x−(u)

)

, (5.10)

we can follow a similar strategy as above. We split off the one-loop density and then

extend the limits of integration in (5.10) to ±∞. It is then clear that we only need the

combination σ̃(u) + σ̃(−u) to obtain the energy. To write the integral equation for the

symmetric combination σ̃(u)+ σ̃(−u) we need the combination I(u)+ I(−u) which we can

split into two parts

I(u) + I(−u) = π
(

G( i
2 ) − G(− i

2 )
) d

du

(

1

x+(u)
− 1

x−(u)

)

+

∫ ∞

−∞
du′ρ0(u

′)

[

1

2g2

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

− 1

u′2 + 1/4

d

du

(

1

x+(u)
− 1

x−(u)

)]

(5.11)

Note that in the integral in (5.11) we have extended the integration limits to ±∞.

Fourier transformation of the equation (5.8) gives

n

2g2
2πe−t/2 (J0(2gt) − 1) = π

(

ˆ̃σ(t) + ˆ̃σ(−t)
)

(1 − e−t) +
1

2

(

Î(t) + Î(−t)
)

(5.12)

+4πg2te−t/2

∫ ∞

0
dt′
(

ˆ̃σ(t′) + ˆ̃σ(−t′)
)

e−t′/2K(2gt, 2gt′),

where the kernel is given by (4.15). For Î(t) we find, to first two orders in the expansion,

1

2

(

Î(t) + Î(−t)
)

= 8πn

(

ln S + γE + ln

(

2

n
sin

π

n

))

te−t/2K(2gt, 0)

+8πte−t/2

∫ ∞

0
dt′

n

et′ − 1

(

K(2gt, 2gt′) − K(2gt, 0)
)

. (5.13)

Using the result for the one-loop energy (5.5) and introducing the density, σ̂(t)

σ̂(t) = −1

8
e−t/2

(

ˆ̃σ(t) + ˆ̃σ(−t)
)

(5.14)
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we hence find for the all-loop equation

σ̂(t) =
t

et − 1

[

K(2gt, 0)
n

2

(

ln S + γE + ln

(

2

n
sin

π

n

))

− n

8g2t
(J0(2gt) − 1)

+
1

2

∫ ∞

0
dt′

n

et′ − 1

(

K(2gt, 2gt′) − K(2gt, 0)
)

−4g2

∫ ∞

0
dt′K(2gt, 2gt′)σ̂(t′)

]

. (5.15)

Taking the dressing function into account replaces the kernel by (4.18). The string energy

can now be written as

E − S = n + 16g2σ̂(0). (5.16)

We note that the integral equation is very similar to the equation in [12] and the solution

can consequently be written as

E − S = n + f(g)
n

2

(

ln S + γE + ln

(

2

n
sin

π

n

))

+
n

2
B2(g) + . . . (5.17)

where B2(g) denotes the virtual scaling function of twist 2 operators. Using the first orders

in the expansions at strong coupling [12],

f(g) = 4g − 3 ln 2

π
+ O(1/g) (5.18)

B2(g) = (−γE − ln g) f(g) − 4g(1 − ln 2) −
(

1 − 6 ln 2

π
+

3(ln 2)2

π

)

+ O(1/g) (5.19)

we find

E − S = 2ng

(

ln
S

g
+ ln

(

4

n
sin

π

n

)

− 1

)

+
n

2

(

1 +
6 ln 2

π
− 3 ln 2

π
ln

(

4

n
sin

π

n

)

− 3 ln 2

π
ln

S

g

)

+ O(1/g) (5.20)

We see that the leading strong coupling result is in agreement with the known string

theory result [14]. For n = 2 we recover the result for the folded string [12], this result is

in full agreement with the one-loop computation from string theory [14, 26]. For arbitrary

n (5.20) is expected to be in agreement with the one-loop result computed from the sigma

model [27]. Nevertheless, as we mentioned already, it would be interesting to compare

the result in the second line in (5.20) with an explicit one-loop string computation of the

O(S0) term.

6 Spiky strings in the Bethe Ansatz: 2-cuts solution

We start again with equation (3.2) where we do not rescale u by S, i.e. we introduce the

root distribution ρ0(u) =
∑S

k=1 δ(u − uk)

−
∫

du′ ρ0(u
′)

u − u′ = πnw(u) − J

2u
≡ πNw(u) (6.1)
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The condition that the total momentum should vanish gives

∫

duρ0(u) ln
u + i

2

u − i
2

= 0 (6.2)

The root density ρ0 is normalized as
∫

duρ0(u) = S (6.3)

The 1-loop anomalous dimension is

E − S =

∫

du
ρ0(u)

u2 + 1
4

(6.4)

Let us consider two cuts d ≤ c ≤ b ≤ a. Extending the bosonic wave number distribu-

tion from the previous section we take

nw(u) =

{

−1, d < u < c

n − 1, b < u < a
(6.5)

Then the root distribution function is

ρ0L(u′) = −2n

π

√

(c − u′)(b − u′)
(u′ − d)(a − u′)

1
√

(a − c)(b − d)

×
(

(a − d)Π

[

(b − a)(u′ − d)

(b − d)(u′ − a)
, r

]

+ (u′ − a)K[r]

)

+
J

2π2u′ (B1(u
′) − B2(u

′)) (6.6)

for the left interval u′ ∈ [d, c], and

ρ0R(u′) =
2n

π

√

(u′ − c)(u′ − b)

(u′ − d)(a − u′)
1

√

(a − c)(b − d)

×
(

(d − a)Π

[

(d − c)(u′ − a)

(a − c)(u′ − d)
, r

]

+ (u′ − d)K[r]

)

+
J

2π2u′ (−B1(u
′) + B2(u

′)) (6.7)

for the right one u′ ∈ [b, a]. Here

r =
(a − b)(c − d)

(a − c)(b − d)
(6.8)

and we used the following definitions of the elliptic integrals

K[m] =

∫ π
2

0

dα
√

1 − m sin2 α
, Π[n,m] =

∫ π
2

0

dα
√

1 − m sin2 α

1

1 − n sin2 α
(6.9)

Also, we denote B1, B2 the integrals

B1(u
′) =

√

|F (u′)|A4, B2(u
′) =

√

|F (u′)|A5 (6.10)
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We compute the residue term in (A.12) and obtain

πRes

[

G(w)

w − z
,∞
]

= z

[

nA1 +
J

2π
(A4 − A5)

]

+ A2 + (n − 1)A3

−a + b + c + d

2

[

nA1 +
J

2π
(A4 − A5)

]

(6.11)

where Ai integrals are defined in the appendix A and can be written in terms of ellip-

tic integrals.

As explained in appendix A we need to take the above residue to zero in order for the

root distribution (6.6), (6.7) to be a solution of (6.1). This gives the following relationship

nA1 +
J

2π
(A4 − A5) = 0, A2 + (n − 1)A3 = 0 (6.12)

Then one can write J, n as functions of a, b, c, d

J =
2πnA1

A5 − A4
, n = 1 − A2

A3
(6.13)

The normalization condition can be computed using the function G as

∫

ρ0(u)du = iRes [G(w),∞] (6.14)

= nA1 +
J

2π
(A4 − A5) + A2 + (n − 1)A3 +

J

2π
(A2 − A3) + A6 + (n − 1)A7

Taking into account equation (6.12) the normalization condition reduces to

J

2π
(A2 − A3) + A6 + (n − 1)A7 = S (6.15)

The consistency of equation (6.1) gives the equation

J

∫

du
ρ0(u)

u
= 2π

∫

duρ0(u)n(u) (6.16)

The momentum condition (6.2) expanded in large u gives

∫

du
ρ0(u)

u
= 0 (6.17)

We use again the residues of the function G to compute the integral in (6.17)

∫

du
ρ0(u)

u
=

1

2

∮

C
dw

G(w)

w
= iπRes

[

G(w)

w
,∞
]

+ iπRes

[

G(w)

w
, 0

]

(6.18)

We already computed the first term and set it to zero in (6.11). What remains is to compute

the second term in (6.18). We obtain

∫

du
ρ(u)

u
=

√
abcd

(

−A4 − (n − 1)A5 −
J

2π
A8 +

J

2π
A9

)

(6.19)
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Therefore the momentum condition (6.17) gives the condition

√
abcd

[

A4 + (n − 1)A5 +
J

2π
(A8 − A9)

]

= 0 (6.20)

All Ai integrals depend on the parameters a, b, c, d. Let us write the physical charges

in terms of these parameters

n = 1 − A2

A3
, J =

2πA1

A5 − A4

(

1 − A2

A3

)

(6.21)

S = A6 +
A1(A2 − A3)

2

A3(A4 − A5)
− A7

A2

A3
, E − S = 2πRe

[

G

(

i

2

)]

(6.22)

where we wrote the energy in terms of the function G whose explicit expression in terms

of elliptic integrals is in (A.20).

We also have the condition (6.20) giving a relationship among parameters a, b, c, d

A4 −
A2

A3
A5 +

A1(A8 − A9)(A3 − A2)

A3(A5 − A4)
= 0 (6.23)

We observe that using the above equations one can in principle solve for the unknown

constants a, b, c, d and obtain the 1-loop anomalous dimension E = E(n, S, J). However,

this is not possible to find explicitly because of the complicated elliptic integrals involved.

Below we consider particular limits.

6.1 Particular limit: 1 cut solution

From the above general 2-cut solution for an arbitrary number of spikes let us recover

the 1-cut solution again with arbitrary number of spikes. The 1-cut solution should be

obtained in the limit

b = c = 0, d < 0, a > 0 (6.24)

To obtain this limit we take b = ǫ, c = −ηǫ and take ǫ → 0+. The parameter η > 0 is to

be determined. The integrals in this limit become

A1 = − ln ǫ√
−ad

+ O(ǫ0), A2 = −π

2
+ arcsin

a + d

a − d
,

A3 =
π

2
+ arcsin

a + d

a − d
(6.25)

A4 = −2 cot−1 √η√
−ad

√
η

1

ǫ
+ O(ln ǫ), A5 =

2 tan−1 √η√
−ad

√
η

1

ǫ
+ O(ln ǫ) (6.26)

A6 =
√
−ad − π

4
(a + d) − (a + d)

2
arcsin

a + d

d − a
(6.27)

A7 =
√
−ad +

π

4
(a + d) − (a + d)

2
arcsin

a + d

d − a
(6.28)

A8 =

√
η − (η − 1) cot−1 √η√

−adη
√

η

1

ǫ2
+ O(ln ǫ), A9 =

√
η + (η − 1) tan−1 √η√

−adη
√

η

1

ǫ2
+O(ln ǫ)

(6.29)
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Then the second equation in (6.12) implies

a + d

a − d
= − cos

π

n
(6.30)

which indeed matches the result from the section 3. The first equation in (6.13) becomes

J = −πnǫ ln ǫ

√
η

tan−1 √η + cot−1 √η
→ 0 (6.31)

The normalization equation (6.15) implies

S = −n

2
(a + d) tan

π

n
(6.32)

which again matches the results in section 3. Finally, the momentum condition (6.20)

determines η to be

η = 1 + π

√

n − 2

n

1√
ln ǫ

+ . . . (6.33)

Equations (6.30), (6.32) can be used to find the parameters a, d in terms of S, n.

The Bethe root density (6.6), (6.7) in this limit reduces precisely to the 1-cut density

expression (3.31).

6.2 Particular limit: “pp-wave” type scaling

We want to consider the limit of large n. To achieve this we take the limit d → −∞ while

keeping a, b, c fixed. The integrals become

A1 =
2√

a − c
K[q]

1√
−d

+ . . . , q =
a − b

a − c
(6.34)

A2 = −π + O

(

1√
−d

)

, A3 =
2√

a − c
[cK[q] + (a − c)E[q]]

1√
−d

+ . . .

(6.35)

A4 =
2

a
√

a − c

[

K[q] − Π

[

a

a − c
, q

]]

1√
−d

+ O

(

1

(−d)3/2

)

(6.36)

A5 =
2

a
√

a − c
Π

[

a − b

a
, q

]

1√
−d

+ . . . , A6 = −π

2
d − π

2
(a + b + c) + O

(

1√
−d

)

(6.37)

A7 =
2

3
√

a − c
[2(a − c)(a + b + c)E[q] + (a(c − b) + c(b + 2c))K[q]]

1√
−d

+ . . . (6.38)

A8 =
1

a2bc
√

a − c

[

a(c − a)E[q]+b(a + c)K[q]−(bc + ab + ac)Π
[ a

a − c
, q
]] 1√

−d
+ . . .

(6.39)

A9 =
1

a2bc
√

a − c

[

a(c − a)E[q] − acK[q] + (bc + ab + ac)Π
[a − b

a
, q
]] 1√

−d
+ . . . (6.40)

The root distributions (6.6), (6.7) in the large −d limit reduce to

ρ0L(u′) = − 2n

π
√

a − c

√

(u′ − b)(u′ − c)

a − u′

(

a − u′

u′ K[q] + Π

[

a − b

a − u′ , q

])

+ O

(

1√
−d

)

(6.41)

– 20 –



J
H
E
P
0
7
(
2
0
0
9
)
0
3
8

ρ0R(u′) =
2n

π
√

a − c

√

(u′ − b)(u′ − c)

a − u′

(

a

u′K[q] − Π

[

a − u′

a − c
, q

])

+ O

(

1√
−d

)

(6.42)

The number of spikes in this limit is

n =
π

2

√
a − c

cK[q] + (a − c)E[q]

√
−d + . . . (6.43)

In this limit the physical parameters scale as

n ≫ 1, S ∼ n2, J ∼ n, E − S ∼ n (6.44)

which is the same as the pp-wave limit scaling found at strong coupling in [20, 21]. More

precisely we obtain

S =
2

π

(cK[q] + (a − c)E[q])2

a − c
n2, J =

2πaK[q]

Π[a−b
a , q] + Π[ a

a−c , q] − K[q]
n (6.45)

The condition (6.20) gives the relationship

2Π

[

a − b

a
, q

]

=
ab + bc + ac

bc
K[q] (6.46)

The above three equations are to be solved for a, b, c as functions of S, J, n and then plug

them in the energy.

In the large d limit the function G(w) becomes

G(w) = − i
√

(w − a)(w − b)(w − c)

w(w − a)

× H(w)
√
−d

((a − c)E[q] + cK[q])(K[q] − Π[a−b
a , q] − Π[ a

a−c , q])
+ . . . (6.47)

where

H(w) = wK[q]2 + w

(

Π

[

a − b

a
, q

]

+ Π

[

a

a − c
, q

])

Π

[

a − b

a − w
, q

]

(6.48)

+K[q]

[

(a − w)Π

[

a − b

a
, q

]

+ (a − w)Π

[

a

a − c
, q

]

−(a + w)Π

[

a − b

a − w
, q

]

− aΠ

[

a − w

a − c
, q

]

]

To find the energy we need to take w = i
2 in G(w). The end of the right cut a is still

large, i.e. |d| ≫ a ≫ 1, therefore we can expand in large a and finally obtain the energy at

leading order in large n

E − S =
2n

√

a(a − c)
(1 + 4b2)

1

4 (1 + 4c2)
1

4 sin

[

1

2

(

tan−1 1

2b
+ tan−1 1

2c

)]

×
(

K[q] − Π

[

a − b

a
, q

])

(6.49)
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When b, c are also large, i.e |d| ≫ b, c ≫ 1 the expression simplifies

E − S = − n(b + c)√
a − c

√
−abc

(

K[q] − Π

[

a − b

a
, q

])

(6.50)

We therefore obtain a set of three equations (6.45), (6.46) which are to be solved for

a, b, c in terms of S, J, n. Furthermore, such solution for a, b, c should be replaced in the

energy (6.49), (6.50).

7 Conclusions

We have found the Bethe root distribution that describes the spiky strings in the context

of the spin chain model that describes the field theory operators in the SL(2) sector. At

one-loop we constructed solutions where the roots condense on one cut and two cuts. The

one cut solutions we were able to extend to all-loops. In particular expanding the result

for large coupling we see that at order ln S and S0 in the large S expansion, we recover

exactly the result obtained from the classical solutions. The result contains a non-trivial

dependence on the number of spikes and therefore is an important test of both, our proposal

of describing the spiky strings by this particular Bethe ansatz solution and, more broadly,

of the all-loop Bethe ansatz used in the calculation. In fact, the all-loop Bethe ansatz also

provides a prediction for the one-loop quantum corrections to the spiky string. This is a

doable calculation that should be interesting to perform in order to verify the prediction.

In the case of the two cut solution, we did not extend the solution to all-loops. This should

be interesting further work since the result at strong coupling is known from the string

side. We have found that the equations simplify in a pp-wave-like limit where the number

of spikes n grows to infinity keeping E+S
n2 , E−S

n and J
n fixed. We showed that such a limit is

well defined at one-loop suggesting the it actually can be taken also at higher loops. Finding

the all-loop solution in this limit would be an interesting problem for further studies.

Acknowledgments

We are grateful to N. Gromov, J. Minahan, A. Tseytlin and S. Zieme for useful discussions.

M. K. and A.T. were supported in part by NSF under grant PHY-0805948 and DOE under

grant DE-FG02-91ER40681. L.F. was supported in part by the Swedish research council.

A Solving the Bethe equations

In this appendix we summarize the procedure that we used to solve the Bethe Ansatz

equations. Although such methods are well known we adapt them here to our particu-

lar needs. However, it remains generic enough to be applied to other situations (e.g. at

strong coupling.).

To be concrete we have to find a function ρ(x) defined on the union of several segments

Ci=1...n on the real axis (i.e. cuts) such that

1

π
−
∫

C1∪...Cn

ρ(x′)
x′ − x

= N(x), x ∈ C1 ∪ . . . Cn (A.1)
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where −
∫

denotes principal part of the integral and N(x) is a given real function defined

on the cuts. As a first step we have to find a complex function G(z), analytic except for

cuts at Ci and a pole at infinity. Furthermore, we require that, on the cuts, the real part

changes sign and the imaginary part is equal to N(x):

G(x ± iǫ) = ±ρ̃(x) + iN(x), x ∈ C1 ∪ . . . Cn, ǫ → 0+. (A.2)

The, yet undetermined, real part we denote as ρ̃(x). It is straightforward to find such a

function in general for any N(x). While the procedure following below can also be directly

extended for an arbitrary number of cuts, we take for simplicity two cuts.

To be specific lets consider two cuts C1 = [d, c], C2 = [b, a] with d < c < b < a and the

following function:

F (w) =
√

w − a
√

w − b
√

w − c
√

w − d (A.3)

where the square roots are defined with a standard cut on the negative real axis. In figure 5

we show the phase of F (w) for w close to the real axis. Now we can write

G(w) =
1

π

∫

C1∪C2

F (w)

F (x + iǫ)

N(x)

x − w
dx (A.4)

It is easy to verify that G(w) so defined has cuts in C1 and C2 and satisfies eq. (A.2) with

ρ̃(x) =
1

π
−
∫
∣

∣

∣

∣

F (x)

F (x′)

∣

∣

∣

∣

N(x′)
x′ − x

dx′ (A.5)

Furthermore it behaves as G(w) ∼ w(ω → ∞). Now consider an arbitrary point z (away

from the cuts) and a small contour γ encircling it as shown in figure 6. We have

G(z) =
1

2πi

∮

γ

G(w)

w − z
dw (A.6)

Deforming the contour we obtain

G(z) = −Res

[

G(w)

w − z
,∞
]

+
1

2πi

∮

C1∪C2

G(w)

w − z
dw (A.7)

where the integral on the right hand side is over contours encircling the cuts clockwise.

From the property (A.2) we find

G(z) = −Res

[

G(w)

w − z
,∞
]

+
1

πi

∫

C1∪C2

ρ(x′)
x′ − z

dx′ (A.8)

From this result and (A.2) we find that, if z approaches one of the cuts from above, then:

ρ̃(x) + iN(x) = G(x + iǫ) = −Res

[

G(w)

w − x
,∞
]

+
1

πi

∫

C1∪C2

ρ̃(x′)
x′ − x − iǫ

dx′ (A.9)

= −Res

[

G(w)

w − x
,∞
]

+ ρ̃(x) +
1

πi
−
∫

C1∪C2

ρ̃(x′)
x′ − x

dx′, ǫ → 0+ (A.10)
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abcd
+1 +1−1

−i
−i
+i

+i

Figure 5. Phase of the function F (w) defined in the text, when w approaches the real axes. Along

the two cuts, the imaginary part changes sign as depicted.

z

CC

γ

1 2

Figure 6. Contours of integration surrounding z and the two cuts.

Therefore

N(x) = iRes

[

G(w)

w − x
,∞
]

+
1

π
−
∫

C1∪C2

ρ̃(x′)
x − x′dx′, (A.11)

So we obtain that ρ̃(x) solves the problem (A.1) under the condition

Res

[

G(w)

w − x
,∞
]

= 0 (A.12)

The residue at infinity can be computed by expanding

G(w) = G0w + G1 +
1

ω
G2 + . . . (A.13)

which results in

Res

[

G(w)

w − x
,∞
]

= −G0 − xG1 (A.14)

namely we need G0 = G1 = 0. Since G(z) is already fixed we can only solve this problem

for certain positions of the cuts. Namely, G0 = G1 = 0 is an equation for a,b,c,d. In that

case, formula (A.5) gives the solution to the problem (A.1).

Furthermore, it is now straight forward to compute integrals of the type

∫

C1∪C2

ρ(u)

un
du =

1

2

∮

C1∪C2

G(w)

wn
dw = πiRes

[

G(w)

wn
, 0

]

+ πiRes

[

G(w)

wn
,∞
]

(A.15)

For example
∫

C1∪C2

ρ(u)du =
1

2

∮

C1∪C2

G(w)dw = πiRes [G(w),∞] = −iπG2 (A.16)

∫

C1∪C2

ρ(u)

u
du =

1

2

∮

C1∪C2

G(w)

w
dw = πiG(0) − πiG0 (A.17)
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∫

C1∪C2

ρ(u)

u − z
du =

1

2

∮

C1∪C2

G(w)

w − z
dw = iπG(z) (A.18)

and so on. In particular the energy E and spin S can be computed by these formulas.

Also, the last equation can be used as an alternative definition of G(z) [24]. In particular

we can recover (A.2) by noticing that

iπG(u′ ± iǫ) =

∫

C1∪C2

ρ(u)

u − u′ ∓ iǫ
du = −

∫

C1∪C2

ρ(u)

u − u′du ± iπρ(u′)

= −πN(u′) ± iπρ(u′) (A.19)

The above discussion of two cuts is valid for any function N(u). However, in this paper

N(u) is simply (6.1) N(u) = nw(u) − J
2πu . For such N(u), the function G can be written

in terms of elliptic integrals as

G(w) =
2i
√

(w − a)(w − b)(w − c)(w − d)

π(w − a)(w − d)
√

(a − c)(b − d)

[(

n2 −
J

2πw

)

×
(

(a − d)Π

[

(b − a)(w − d)

(b − d)(w − a)
, r

]

+ (w − a)K[r]

)

−
(

n1 −
J

2πw

)

×
(

(d − a)Π

[

(d − c)(w − a)

(a − c)(w − d)
, r

]

+ (w − d)K[r]

)]

+
iJ
√

(w − a)(w − b)(w − c)(w − d)

2π2w
(A4 − A5) (A.20)

where n1, n2 are integers. In our case of interest n1 = −1, n2 = n − 1.

In the remaining of this appendix let us define the integrals used in this paper. First

it is convenient to define the function

|F (x)| =
√

|(x − a)(x − b)(x − c)(x − d)| (A.21)

We can now compute

A1 =

∫ a

b

dx

|F (x)| =
2

√

(a − c)(b − d)
K[r] (A.22)

A2 =

∫ c

d

xdx

|F (x)| =
2

√

(a − c)(b − d)

[

(d − a)Π

[

d − c

a − c
, r

]

+ aK[r]

]

(A.23)

A3 =

∫ a

b

xdx

|F (x)| =
2

√

(a − c)(b − d)

[

(a − d)Π

[

b − a

b − d
, r

]

+ dK[r]

]

(A.24)

A4 =

∫ c

d

dx

x|F (x)| =
2

ad
√

(a − c)(b − d)

[

(a − d)Π

[

a(d − c)

d(a − c)
, r

]

+ dK[r]

]

(A.25)

A5 =

∫ a

b

dx

x|F (x)| =
2

ad
√

(a − c)(b − d)

[

(d − a)Π

[

d(b − a)

a(b − d)
, r

]

+ aK[r]

]

(A.26)

A6 =

∫ c

d

x2dx

|F (x)| =
1

√

(a − c)(b − d)

[

(a − c)(b − d)E[r]

+(a(a + c) + d(a − c))K[r] − (a − d)(a + b + c + d)Π

[

d − c

a − c
, r

]

]

(A.27)
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A7 =

∫ a

b

x2dx

|F (x)| =
1

√

(a − c)(b − d)

[

(a − c)(b − d)E[r]

+(c(a + c) + b(c − a))K[r] − (c − b)(a + b + c + d)Π

[

a − b

a − c
, r

]

]

(A.28)

A8 =

∫ c

d

dx

x2|F (x)| =
1

a2d2bc
√

(a − c)(b − d)

[

ad(a − c)(b − d)E[r] (A.29)

+bd(−a2 + cd + a(c + d))K[r] + (a − d)(bcd + acd + abc + abd)Π

[

a(d − c)

d(a − c)
, r

]

]

A9 =

∫ a

b

dx

x2|F (x)| =
1

c2b2ad
√

(a − c)(b − d)

[

cb(a − c)(b − d)E[r] (A.30)

+bd(−c2 + ab + c(a + b))K[r] + (c − b)(dab + cab + acd + cbd)Π

[

c(b − a)

b(c − a)
, r

]

]

B Subleading corrections for the ground state

In the main text we compute the subleading corrections (in the large S expansion) to the

density of roots. It is convenient to remind ourselves how this is done in the case of the

ground state which is described by a symmetric root distribution. We do this at one-loop

and and then make us of that solution to construct the all-loop solution.

One loop. The one-loop equation for the ground state reads

2πρ0(u) + 2π(J − 2)δ(u) − J

u2 + 1/4
− 2

∫ S/2

−S/2
dv

ρ0(v)

(u − v)2 + 1
= 0. (B.1)

An approximate solution to the equation is given by the following density [24, 28] which

we expand for large S

ρ̃0(u) =
1

π
ln

1 +
√

1 − 4u2/S2

1 −
√

1 − 4u2/S2
=

2

π
ln S − 1

π
ln(u2) + O(1/S2). (B.2)

This density captures the leading order in the large spin expansion correctly. To get the

subleading corrections of order S0 we split the density,

ρ0(u) = ρ̃0(u) + r(u), (B.3)

and solve for r(u). We are now allowed to extend the limits of integration to ±∞.

2πr(u) + 4 ln S − 2 ln(u2) + 2π(J − 2)δ(u) − J

u2 + 1/4

−2

∫ ∞

−∞
dv

(

2

π
ln S − 1

π
ln(v2)

)

1

(u − v)2 + 1
− 2

∫ ∞

−∞
dv

r(v)

(u − v)2 + 1
. (B.4)

The equation can now be solved by Fourier transformation

r̂(t) = 2

(

e−|t|/2

1 − e−|t| −
1

|t|

)

− (J − 2)
1

1 + e−|t|/2
. (B.5)
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Computing the energy we find

E − S =

∫ S/2

−S/2

ρ̃0(u)

u2 + 1/4
+

∫ ∞

−∞
du

r(u)

u2 + 1/4

= 4 ln S + 4 ln 2 + 2

∫ ∞

−∞
dt

(

e−|t|

1 − e−|t| −
e−|t|/2

|t|

)

− (J − 2)

∫ ∞

−∞
dt

e−|t|/2

1 + e−|t|/2

= 4 (ln S + γE − (J − 2) ln 2) (B.6)

All loops. The all loop equation reads

J
d

du
ln

x(i/2 + u)

x(i/2 − u)
= 2πρ(u) + 2π(J − 2)δ(u) −

∫ S/2

−S/2

ρ(u′)
(u − u′)2 + 1

(B.7)

+

∫ S/2

−S/2
du′ρ(u′)

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

− 2θ(u, u′)

)

.

In the following the dressing phase will be omitted for simplicity. It is easily restored in

the end. Splitting the density

ρ(u) = ρ0(u) + 2g2σ̃(u), (B.8)

where ρ0(u) satisfies (B.1) we find

J

2g2

(

d

du
ln

x(i/2 + u)

x(i/2 − u)
− 1

u2 + 1/4

)

= 2πσ̃ − 2

∫ ∞

−∞

σ̃(u′)
(u − u′)2 + 1

+ I(u) (B.9)

+

∫ ∞

−∞
du′σ̃(u′)

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

where

I(u) =
1

2g2

∫ S/2

−S/2
du′ρ0(u

′)
d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

. (B.10)

Note that the limits of integration in the integrals containing the higher loop density can

extended to ±∞ as we are considering the large S limit. Further we can split the integral,

I(u), into two parts

I(u) = π
(

G( i
2 ) − G(− i

2 )
) d

du

(

1

x+(u)
− 1

x−(u)

)

+

∫ ∞

−∞
du′ρ0(u

′)

[

1

2g2

d

du

(

2i ln
1 − g2/x+(u)x−(u′)
1 − g2/x+(u′)x−(u)

)

− 1

u′2 + 1/4

d

du

(

1

x+(u)
− 1

x−(u)

)]

(B.11)

where G(u) is the one-loop resolvent, defined similarly to (3.9). Here we have used that

the root distribution is symmetric around the origin. Note that in the integral in (B.11)

we have extended the integration limits to ±∞.

– 27 –
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Fourier transformation of the equation (B.9) gives

J

2g2
2πe−t/2 (J0(2gt) − 1) = 2π ˆ̃σ(t)(1 − e−t) + Î(t)

+8πg2te−t/2

∫ ∞

0
dt′ ˆ̃σ(t′)e−t′/2K(2gt, 2gt′), (B.12)

with the kernel given by (4.15). For Î(t) we find, to first two orders in the expansion,

Î(t) = 16 (ln S + γE − (J − 2) ln 2) πte−t/2K(2gt, 0) (B.13)

+4πte−t/2

∫ ∞

0
dt′
(

2

1 − e−t′
− J − 2

1 + e−t′/2

)

e−t′/2
(

K(2gt, 2gt′) − K(2gt, 0)
)

.

Redefining the density as

σ̂(t) = −1

4
e−t/2 ˆ̃σ(t) (B.14)

we hence find for the all-loop equation

σ̂(t) =
t

et − 1

[

K(2gt, 0)(ln S + γE − (J − 2) ln 2) − J

8g2t
(J0(2gt) − 1)

+
1

2

∫ ∞

0
dt′
( 2

et′ − 1
− J − 2

et′/2 + 1

)

(

K(2gt, 2gt′) − K(2gt, 0)
)

−4g2

∫ ∞

0
dt′K(2gt, 2gt′)σ̂(t′)

]

. (B.15)

The energy is then given by

E − S = J + 16g2σ̂(0). (B.16)

The effect of the dressing phase can now be restored by replacing the kernel above

with (4.18) and we have hence obtained the same integral equation as in [12].

Note that this derivation explicitly made use of the fact that the density is symmet-

ric. In the main text we do a similar calculation for the asymmetric distribution we are

considering in this paper.
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